Ch.3 Set Theory

Return to TOC


Set Theory

Operations with Sets

Given sets XX and YY:
Proving XYX\subseteq Y: check a(aXaY)\forall a(a\in X\implies a\in Y)
Proving X=YX=Y: check a(aXaY)\forall a(a\in X\iff a\in Y)

UU: "universe"- all sets AA are subsets of UU
\empty: empty set- A\empty\subseteq A for all AA
P(A)P(A): power of a set- {SU  SA}\{S\subseteq U\space|\space S\subseteq A\}- "set of sets" (includes \empty and AA)
A×BA\times B: cartesian product of two sets- A×B={(a,b)  aAbB}A\times B=\{(a,b)\space|\space a\in A\land b\in B\}; is an ordered pair

Example 3.1

S={N,Q,R,Z}A={a,e,i,o,u}B={a,b,c}C={0,1}S=\{\mathbb{N},\mathbb{Q},\mathbb{R},\mathbb{Z}\}\\A=\{\text{a,e,i,o,u}\}\\B=\{\text{a,b,c}\}\\C=\{0,1\}

Example 3.2

Show that XY=XYcX\setminus Y=X\cap Y^c for any sets XX and YY


Two approaches: check all elements of left are elements of right, then all elements of right are elements of left; or use a series of equivalent statements

First check XYXYcX\setminus Y\subseteq X\cap Y^c
Take aXYa\in X\setminus Y. By definition, aXA∉Ya\in X\land A\not\in Y. By definition of compliment, aXAYca\in X\land A\in Y^c. Finally, by definition of intersection, aXYca\in X\cap Y^c
Next check XYcXYX\cap Y^c\subseteq X\setminus Y (omitted)

Since they are by definition, we can go both ways with equivalent statements: aXYaXa∉Ya\in X\setminus Y\iff a\in X\land a\not\in Y by definition, therefore it goes both ways.